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ABSTRACT: The efficient design of experiments (i.e., selection of experimental doses
and allocation of animals) is important to establishing dose−response relationships in
toxicology studies. The proposed procedure for design of experiments is distinct from
those in the literature because it is able to adequately accommodate the special features of
the dose−response data, which include non-normality, variance heterogeneity, possibly
nonlinearity of the dose−response curve, and data scarcity. The design procedure is built
in a sequential two-stage paradigm that allows for a learning process. In the first stage,
preliminary experiments are performed to gain information regarding the underlying dose−
response curve and variance structure. In the second stage, the prior information obtained
from the previous stage is utilized to guide the second-stage experiments. An optimization
algorithm is developed to search for the design of experiments that will lead to dose−
response models of the highest quality. To evaluate model quality (or uncertainty), which is
the basis of design optimization, a bootstrapping method is employed; unlike standard
statistical methods, bootstrapping is not subject to restrictive assumptions such as normality
or large sample sizes. The design procedure in this paper will help to reduce the experimental cost/time in toxicology studies and
alleviate the sustainability concerns regarding the tremendous new materials and chemicals.
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■ INTRODUCTION

This work is primarily motivated by the rising need to assess the
risks resulting from human exposure to various nanomaterials.
With the rapid development of nanotechnology, nanomaterials
find increasing applications in the energy,1,2 environment,3−5

and biomedical engineering sectors.6,7 Workers may be directly
exposed to nanomaterials during manufacturing, handling, and
transport of nanomaterials, and end-users may uptake nanomaterials
due to the release of nanomaterials from consumer products.
Therefore, risk assessment of a large variety of nanomaterials plays a
critical part to ensure the safe and sustainable development of
nanotechnology.
One of the most fundamental steps in assessing the risk of a

nanomaterial (or any other substance) is to understand and
properly characterize its dose−response relationship.8,9 To
estimate such relationships, biological experiments need to be
performed at different dose levels to observe the corresponding
bioactivity responses of animals. Because of costs, ethics, or other
limitations on resources or time, sample sizes are usually restricted
and efficient use of available resources is critical. Thus, the design
of experiments (DOE), i.e., the selection of experimental doses
and the allocation of animals, plays an important role in the success
of dose−response modeling.
The DOE for efficient dose−response modeling is challenging

due to the following two major reasons. First, the dose−response
curves may well be nonlinear,10−12 and thus, the optimum design

of experiments depends on the true underlying curves to be
estimated, which is unfortunately unknown.13,14 Second, with
constrained resources, typically the amount of data allowed to be
collected are not only relatively scarce and highly variable but
almost certainly possess different variability across the dose range
being investigated.15 These special features of dose−response
data are not adequately addressed in the existing DOE methods.
In the current practice of DOE for toxicology studies, designs

are mainly selected by experimenters based on empirical
experiences in a somewhat arbitrary manner.16,17 Such designs,
which will be referred to as the traditional design, usually involve
equally spaced doses on a linear or log scale and equal allocation
of animals and may well lead to inefficient use of resources. Some
researchers8,18−21 recognized the nonlinearity of dose−response
relationships and resorted to standard optimum design
techniques13 to approach the DOE issues. These works relied
on the assumption of constant variance throughout the dose
range, which typically does not hold in reality. There is also some
literature by statisticians that investigated the optimum design
for statistical modeling in general while taking into account the
existence of variance heterogeneity. In this stream of work,22−32
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solutions under various simplistic assumptions. For instance,
DasGupta et al.23 derived the optimal designs under normal prior
conditions for the simple linear model when the error variance is a
power function or an exponential function of the mean. These
results, though theoretically appealing, are often impractical for
toxicology studies where the required assumptions no longer hold.
The objective of this work is to develop a DOE procedure,

which is statistically valid and practically useful, to guide the dose
selection and animal allocation in biological experiments for the
efficient generation of dose−response relationships. Through the
following three major efforts, we intend to provide a new DOE
method that adequately accommodates the nonlinear nature of
dose−response curves and variance heterogeneity of toxicity
data. (i) The proposed procedure is built in a two-stage paradigm.
In the first stage, a batch of preliminary experiments are performed
to gain information regarding the underlying dose−response curve
and variance structure. In the second stage, the prior information
obtained from the previous stage is utilized to guide the second
batch of experiments. Compared to the traditional once-and-for-all
designs, such a sequential design is known to lead to improved
model estimation when a total sample size is given or to bring
savings in samples if a certain model quality is desired. (ii) For the
design of the second batch of experiments, a new algorithm
(Algorithm 3) is developed to effectively search for the optimum
design that will lead to dose−response models of the highest
quality. (iii) To evaluate the model quality, which is the basis of
design optimization in (ii), bootstrapping, as opposed to standard
statistical methods, is employed. Bootstrapping is a computation-
ally intensive resampling method and is not subject to restrictive
assumptions such as normality or large sample sizes.
The remainder of this paper is organized as follows. The

Statistical Modeling and Inference section details the modeling/
inference issues involved in the estimation of dose−response
curves and provides the building blocks of the two-stage DOE
procedure. The procedure, which aims at achieving an efficient
experimental design, is described in the Two-Stage Procedure

section. In the Empirical Evaluation section, a simulation study is
performed to evaluate the efficiency of the proposed DOE
procedure by comparing it with the traditional design currently
used in toxicology studies. The Summary section summarizes the
findings of this paper and discusses future work.

■ STATISTICAL MODELING AND INFERENCE
In this section, we present the statistical modeling and inference
methods for estimating the dose−response relationship based on
a given set of experimental data. These methods provide the
necessary basis for the DOE procedure in the Two-Stage
Procedure section.

Heteroscedastic Dose−Response Model. Let Y be the
continuous random response of a biological experiment. We
represent the dose−response curve by a general model

θ| =Y x f xE[ ] ( , )

where x denotes the dose level and θ the p× 1 vector of unknown
parameters. The random variable Y is related to its mean by the
relationship

ε= | +Y Y xE[ ]

where ε is the error term. The feasible region of the dose level x is
typically specified by

≤ ≤x x xL U (1)

The lower and upper bounds, xL (xL ≥ 0) and xU (xU > xL), are
specified by the experimenters based on the substance of interest.
The mean response model f(x, θ) can take any functional

forms that are differentiable and monotonic. Example models
include linear, polynomial, power (EPA Benchmark Dose
Software33), and the four-parameter logistic model widely used
in the literature.34,35 In the empirical study of this paper, the
following functional form is used for illustration

θ θ θ=f x x( , ) exp( / )1 2 (2)
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The error ε is assumed independent across individual
observations, and to be expressed as

θ γε σ= h f x e( ( , ), ) (3)

where σ is a scale parameter; e is a random error following the
standard normal distribution; h describes how the standard
deviation of ε depends on the mean response f(x, θ); and γ
denotes the vector of unknown parameters involved in model h.
The formulation of the error (3) is able to model a wide range

of error heterogeneity commonly encountered and has been
extensively employed in the literature.35−38 In this work, a
specific functional form as given below is assumed for the
variance model h( f(x,θ),γ) of the empirical example in the
Empirical Evaluation section

θ θγ = γh f x f x( ( , ), ) ( , ) (4)

where γ is the unknown parameter. The form (eq 4) has been
popularly used in toxicology and pharmacology studies.34−36,38,39

Estimation of Dose−Response Model and Benchmark
Dose (BMD). Given a data set {(xi,yi),i = 1,...,I} with a sample
size of I, how do we estimate the dose−response models in the
presence of variance heterogeneity? Preliminary data analysis as
that suggested by Carroll and Ruppert36 need to first be
performed to select specific functional forms for f(x,θ) and
h( f(x,θ),γ), which may turn out to be eqs 2 and 4, respectively,
for examples. Then, the iteratively reweighted least-squares
(IRLS) framework36 is adopted to fit the models. The IRLS
algorithm (Algorithm 1) is described using the notations of our
dose−response modeling.
With the estimated dose−response model f(x,θ ̂), the expected

toxicity response can be obtained as f(x,θ̂) at any exposure level
x0 ∈ [xL,xU]. The model also allows for the estimation of
exposures at responses of different severities; such an exposure
level is referred to as benchmark dose (BMD) and is of particular
interest in toxicology because it assists in setting the safety
standard for the substance being investigated.

The BMD is the dose that corresponds to a specified level of
adverse response called the benchmark response (BMR). The
BMR can be defined as a relative change in the mean response
from the control mean or as an absolute level.33,40 Either
definition can be selected based on the knowledge available
regarding the substance’s adverse effects, and in modeling, the
BMR defined in one way can be easily converted to that defined
in the other way. For illustration in this work, we let the BMR be a
preselected absolute response. Given the fitted dose−response
model f(x,θ̂), the BMD can be estimated as

θ= ̂̂ −fBMD (BMR, )1
(5)

where f−1 represents the inverse function of f.
Quantifying Estimation Uncertainty. In this part, we

discuss the uncertainty quantification (or statistical inference
issues) for the dose−response modeling. The following two
types of uncertainties/variabilities are of primary interest.

• Var[θ̂], the variance of the estimated parameters θ̂ in the

fitted dose−response model f(x,θ̂).
Clearly, Var[θ ̂] determines the quality of the estimated

dose−response model f(x,θ̂). With the increasing of
experimental data (sample size), Var[θ ̂] will decrease and
is directly associated with the D-optimum design criterion
in the DOE literature.13

• Var[ ̂BMD], the variance of the estimated BMD.
As shown in eq 5, ̂BMD is a function of the pre-specified

BMR, which is deterministic, and the estimated parameter
θ̂, which is subject to uncertainties. Hence, Var[ ̂BMD] is
affected by both the BMR value and Var[θ̂]. For a certain
BMR, Var[ ̂BMD] directly relates to the safety standard of
a substance. With Var[ ̂BMD], a confidence interval (CI)
can be formed for the BMD, and it has a clear and
practically meaningful interpretation. In toxicology
studies, the lower bound of the CI is referred to as
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BMDL and represents the lower confidence limit on the
dose that would result in the required response BMR33

In light of the discussions above, Var[θ ̂] measures the overall
quality of the dose−response model, whereas Var[ ̂BMD] not
only depends on the model quality but is also associated with a
particular BMR. Depending on the purpose of a study, either of
these two variabilities can serve as the criterion to drive the
optimal design of experiments. Either criterion can well fit into
our two-stage DOE procedure.
As will be seen later in Algorithm 3 (Two-Stage Procedure

section), the prerequisite of using Var[θ ̂] or Var[ ̂BMD] as a
design criterion is the ability to evaluate these variabilities for a
candidate design. This ability can be derived from the evaluation
of Var[θ̂] or Var[ ̂BMD] for a given sample data set, which will be
discussed in the remainder of this subsection.
Bootstrap Resampling Algorithm. As mentioned in the

Introduction section, standard statistical inference methods are
not able to provide valid variability estimates for dose−response
modeling. Hence, we use a bootstrapping resampling method to
evaluate Var[θ ̂] and Var[ ̂BMD]. The bootstrap is a data-based
simulation method for statistical inference.41 The basic idea of
bootstrap is to use resampling (sampling from the sample,
obtaining what is called bootstrap samples) to quantify the
variability of the estimates of interest.42

Under the assumptions given in the Heteroscedastic Dose−
Response Model subsection, the resampling scheme proposed
by Zeng and Davidian35 is adapted to quantify the uncertainties
of the model estimation performed on the given data set
{(xi,yi);i = 1,2,...,I}, and the resampling algorithm is described in
Algorithm 2.
Zeng and Davidian35 recommended setting the resample size

to B = 499 based on their empirical experience. Note thatM, the
assumed number of design points in Input (a) of the algorithm, is
allowed to be different from I, the number of real samples
{(xi,yi);i = 1,2,...,I} involved in Input (b). If the purpose of
executing Algorithm 2 is solely to quantify the model
uncertainties given a real data set {(xi,yi);i = 1,2,...,I}, then we
set M = I. However, in this work, Algorithm 2 is meant to be
called by Algorithm 3 (the DOE algorithm in the Two-Stage
Procedure section) to evaluate additional candidate design
points, and hence, we distinct between M and I with M ≥ I.
Quantifying the Uncertainty of Estimated Model Param-

eters. Given{θ ̂ *
b ; b = 1,2,...,B} obtained from Algorithm 2, the

variance-covariance matrix Var[θ̂] can be estimated as follows36

∑θ θ θ θ θ̂ = ̂* − ̂ ̂* − ̂ ′̂ −

=

BVar[ ] ( )( )
b

B

b b
1

1 (6)

where θ ̂ are the estimates obtained from the original data
{(xi,yi);i = 1,2,...,I}.
Quantifying the Uncertainty of Estimated BMD. Recall the

expression of BMD (eq 5). With the B fitted models {f(x,θ ̂ *
b );

b = 1,2,...,B} from Algorithm 2, B BMD estimates can be obtained
as follows

θ* = ̂*̂ −fBMD (BMR, )b b
1

(7)

for a pre-specified BMR. On the basis of { *̂BMDb ; b = 1,2,...,B},

Var[ ̂BMD] is estimated as

∑= * −̂ ̂ ̂ ̂−

=

BVar[BMD] (BMD BMD)
b

B

b
1

1

2

(8)

where ̂BMD is obtained from f(x,θ̂), and the dose−response
model is estimated from the original sample data {(xi,yi);i =
1,2,...,I}.
The variance estimate Var[ ̂BMD] can be used to form the one-

sided confidence interval (CI) for the BMD33 at a selected
confidence level α. The BMDL (lower bound of the one-sided
CI) is given as35

= − ̂̂ ̂α −tBMDL BMD Var[BMD]M p, (9)

where tα,M−p stands for the 100αth quantile of the student t
distribution withM−p degrees of freedom, in which p stands for
the number of fitted parameters in the dose−response model.

■ TWO-STAGE PROCEDURE

The major contribution of this work lies in the development of a
new two-stage DOE procedure for dose−response modeling.
Compared to standard once-and-for-all designs, sequential
(multi-stage) designs typically lead to (i) savings in sample size
if model estimates of desired quality (measured by the
uncertainty/variabilty of model estimates) are to be achieved
or (ii) model estimates of improved quality given a fixed total
sample size.11,43 Because biological studies are typically
performed with restricted sample sizes, the two-stage design
procedure in this work is tailored to achievemodels of the highest
quality with a pre-specified total sample size. It is worth pointing
out that the two-stage procedure can be easily adapted to a design
procedure that is driven by a desired model quality and not
constrained by a pre-specified total sample size; such a procedure
may involve multiple (more than two) stages of experiments.
For the two-stage DOE procedure, the inputs are given as

Input 1: N, the total sample size available.
Input 2: [xL,xU], the range of interest for the dose level, as
defined in the Heteroscedastic Dose-Response Model
section.
Input 3: NI, the batch size of the experiments (i.e., the
number of samples) performed at Stage I, which implies
that the sample size is N−NI at Stage II.
Input 4 (optional): BMR, the pre-specified benchmark
response level, which is not necessary unless the design

criterion is Var[ ̂BMD].

The outputs of the procedure include the design of
experiments for the N samples; the dose−response model
f(x,θ ̂) and the variance model σ̂h( f(x,θ̂),γ)̂, both of which are
estimated from the N-sample data set and allow for the BMD
estimation; and the uncertainties of the estimates of interest

including θ ̂̂Var[ ] and ̂ ̂Var[BMD] if a pre-specified BMR is given.
Figure 1 provides an overview of the design procedure. In

Stage I, pilot experiments with a sample size of NI are carried
following the initial design, and initial statistical modeling/
inference are performed. The design augmentation in Stage II is
performed utilizing the information derived from the exper-
imental data collected in Stage I, and N−NI additional
experiments are carried out following the augmented design.
On the basis of the collected data from both stages, the dose−
response and variance models are estimated, and related
uncertainties quantified.
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Clearly, the key tasks yet to be addressed in Figure 1 are the
initial design in Stage I and the design augmentation is Stage II.
Both tasks aim at answering the DOE questions in their
designated stages, such as at what design points (i.e., dose levels)
within the design space [xL,xU] should the experiments be carried
out and howmany replications should be assigned to each design
point?
Two alternative notations are used in this paper to represent a

design. One is given as

̃ =
···
···

⎛
⎝⎜

⎞
⎠⎟

x x x
n n n

D

D

1 2

1 2 (10)

with xd being the d
th design point, nd the number of replications at

xd, and D the number of distinct design points. Clearly, the total
sample size given by ̃ is ∑d = 1

D nd. Alternatively, a design (10)
can be expressed as

̃ = ···x x x( )M1 2 (11)

with M = ∑d = 1
D nd being the number of samples. Note that the

array ̃ may well include the same design points multiple times,
which correspond to multiple replications. In the remainder of
this paper, both eqs 10 and 11 will be used to refer to a design.
Stage I: Initial Design.At Stage I,NI preliminary samples are

to be performed. GivenN, the total number of samples available,
we recommend setting NI as 1/4−1/2 of N. Guidelines for
specifyingNI can also be found in Santner et al.

11 Having selected
a value for NI, how do we allocate these NI samples? Following
the notation in eq 10, the initial design is represented as

̃ =
···

···

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

x x x

n n n

I
I I

D
I

I I
D

I

( ) 1
( )

2
( ) ( )

1
( )

2
( ) ( )

0

0 (12)

where D0 is the number of distinct dose levels.
In this work, assuming that no prior information other than the

dose range [xL,xU] is available at the initial stage, we specify the
initial design as follows. First, the design points {x1

(I),x2
(I),···,xD0

(I)}
are evenly spaced on the original or log scale, as in the traditional
designs, and we set x1

(I) = xL and xD0

(I) = xU, including lower and
upper bounds of the dose range in the design to avoid potential
extrapolation, which is considered dangerous in statistical

estimation.44 Second, D0, the number of distinct design points,
has to be at least four, which is the typical number needed
to capture the trend of a dose−response curve. Third, we have
nd
(I) ≥ 3 for any d to allow for the detection of variance hetero-
geneity and for the estimation of the variance model (eq 3). In the
absence of any other concerns, we can simply set n1

(I) = n2
(I) = ··· =

nD0

(I). For instance, in light of the considerations above, the initial
design for the example in the Empirical Evaluation section is
specified as

⎛
⎝⎜

⎞
⎠⎟

0 7.5 15 22.5 30
4 4 4 4 4 (13)

given that NI = 20 and [xL,xU] = [0,30].
Note that the initial design is set up to enable a fair estimation

of the dose−response and variance models. Following the initial
design, a total of NI samples are collected at Stage I of the
procedure (Figure 1) and are denoted as {(xi,yi); i = 1,2,...,NI}.
From these NI samples, the preliminary models are obtained by

applying Algorithm 1: the fitted dose−response model f(x,θ ̂ I( )
)

and the variance model σ̂h( f(x,θ ̂ I( )
),γ ̂ I( )), both of which are used

to guide the DOE in Stage II.
Stage II: Design Augmentation. The task of the Stage II

design augmentation is to find out how to allocate the restN−NI
samples in the design space [xL,xU], that is, to determine the
values of N−NI design points, which are denoted as
{xNI+1,xNI+2,...,xN} following the notation (11).
In this work, the dosage range [xL,xU] is divided into a

relatively large number of equally spaced grid points, and only
these grid points are considered as the candidate design points
for the design optimization (14) for the following reason. The
equally spaced grid points can be chosen in such a way that any
two neighboring points are practically different. By restricting the
design points to these grid points, the design optimization 14 can
avoid providing design points that are numerically but not
practically different.
As in eq 14, the N−NI design points are selected to minimize

the design criterion subject to two constraints. First, NI samples
have already been collected. Second, these N−NI points have to
be selected from the predetermined grid points within [xL,xU]. As
mentioned earlier, depending on the practical need, the design

Figure 1. Overview of the two-stage procedure.
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criterion could be |Var[θ̂]|, the determinant of the variance-
covariance matrix of θ̂, or Var[ ̂BMD], the variance of ̂BMD for a
given BMR.

Solving this optimization problem to obtain the best design is
challenging. (i) The design criterion in the objective function
(eq 14) represents the variability of themodel estimates (θ̂ or ̂BMD)
obtained from all the experimental data including those collected at
first and second stages. However, at the current point of solving
eq 14 and designing for second-stage experiments, only first-stage
data are available, and there is no closed-form formulation for the
objective function. To overcome this difficulty, in Algorithm 3,
which aims at solving eq 14, a bootstrapping-based method is
developed to numerically evaluate the design criterion and to
provide the basis to solve the design optimization. (ii) Determining
{xNI+1,xNI+2,...,xN} simultaneously is difficult due to the high

dimension (which is N−NI) of the decision variables and the
large size of the decision space. In light of this, we use a heuristics
that adds one design point at a time until all the N−NI points have
been found. The algorithm for solving eq 14 is described as follows

assuming that Var[ ̂BMD] is the design criterion. The algorithm
can be straightforwardly adapted to the design optimization with
|Var[θ̂]| being the criterion, as will be explained later.

Algorithm 3 is initiated with the Stage I design ̃ = ̃ I( )
, and

the first FOR-LOOP iterates to add one design point to the

design ̃ at a time until all the N−NI design points have been

found. At this iteration level, for a given design ̃ that already
includesNI+k (k = 0,1,...,N−NI−1) points, how do we determine
the (NI+k+1)

th design point? The answer is the second FOR-
LOOP, which iterates to evaluate every grid point; the best grid
point is chosen as the (NI+k+1)

th design point, and the design D
is updated accordingly. Steps (i) and (ii) are the bootstrapping-
based methods developed to evaluate each grid point in terms of
their additional contribution to the optimization objective, given

a to-be-expanded design ̃ .
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Note that Algorithm 3, which is driven by the design criterion
Var[ ̂BMD], can be easily modified to solve eq 14 with the
criterion being |Var[θ̂]|. The only change that needs to be made

is to replace Step (ii) by evaluating θ| ̂ |̂Var[ ]
g( )

with eq 6.
Following the additional design {xNI+1,xNI+2,...,xN} found by

applying Algorithm 3, Stage II experiments will be performed for
data collection. Lastly, based on all the data collected at both
stages with a total sample size of N, statistical modeling and
inference will be performed to obtain the final estimation for the
dose−response model and the BMD and to quantify the
uncertainties on those estimates of interest.

■ EMPIRICAL EVALUATION
The proposed two-stage design procedure has been evaluated by
a simulation study, which is based on sampling through computer
experiments whose outputs mimic dose−response data from real
experiments. Simulation, rather than real experiments, is
employed for the following reasons. First, only in a simulation-
based study are the true dose−response models (i.e., the
simulation models) available to evaluate the model estimates.
Second, the outcome of a design procedure is random due to the
randomness of responses; hence, a design procedure needs to be
evaluated in a statistical manner based on the outcomes of
applying it many times, which is impossible with real experi-
ments. These advantages of simulation will become clear in the
Comparison with Traditional Design subsection.
Simulation Models. In this case, the simulation data are

generated using the following true dose−response and variance
models

θ =f x x( , ) 20 exp( /11) (16)

θ θγ σ= =h f x f x( ( , ), ) ( , ) and 0.10.7
(17)

At an arbitrary dose level, say x0, a response y0 is simulated as

θ θσ γ ε

ε

= +

= + ×

y f x h f x

x x

( , ) ( ( , ), )

20 exp( /11) 0.1(20 exp( /11))
0 0 0

0.7
(18)

where ε is a random error provided by a standard normal random
number generator.45

The simulation models (eqs 16 and 17) are derived from the
real experimental data in the toxicity study of TiO2 nanowires.

46

The dose x represents the TiO2 nanowire dosage in terms of μg/
mouse, and the response y is the BAL (bronchoalveolar lavage)
PMNsmeasured in the units of 103/mouse. C57BL/6J malemice
were exposed to selected dosages of TiO2 nanowires, and at
seven days post-exposure, whole lung lavage was conducted to
obtain the BAL PMN counts.
The true models (eqs 16 and 17) are blind to the two-stage

procedure and are only used for two purposes in this study: (i) to
generate simulation data that mimic real biological data and (ii)
to serve as the true benchmark to evaluate the model estimates
obtained from applying the DOE procedure.
Applying the Two-Stage Procedure. For the toxicity

study of TiO2 nanowires, suppose that it is of particular interest
to establish the BMD corresponding to a BMR of 177 ( × 103/
mouse) for the BAL PMN endpoint. (Recall that the BMR can be
defined in different ways that do not affect the application of our
methods, and in this paper, we treat the BMR as an absolute
level.) How to specify a BMR is beyond the scope of this work,
and BMR = 177 is employed for the purpose of illustration.

The two-stage DOE procedure (Figure 1) is applied to guide
the experiments (that is, the simulation experiments in this
empirical study) for the efficient collection of dose−response
data, aiming at obtaining a good BMD estimate corresponding to
the target BMR = 177. The inputs of the procedure are given as
follows:

Input 1: N = 40, the total sample size available.
Input 2: [xL,xU] = [0,30], the dose range of interest.
Input 3:NI = 20: the batch size of the experiments (i.e., the
number of samples) performed at Stage I, which implies
that the sample size is N−NI = 20 at Stage II.
Input 4: BMR = 177: the pre-specified benchmark
response.

The criterion in the design optimization (eq 14) is set as
Var[ ̂BMD] accordingly.
Stage I: The initial design with NI = 20 samples was obtained

and is given in Table 1. Five evenly spaced distinct design points

are selected over the dose range [xL,xU] = [0,30] with four
replications at each point. At each dose level xi (i = 1,2,...,20), the
response subject to random errors is generated by plugging the
value of xi into eq 18, and the response data are given in Table 2.
From the paired data {(xi,yi); I = 1,2,...,20}, the dose−response
and variance models are estimated as follows by applying
Algorithm 1

θ ̂ =f x x( , ) 20.47 exp( /11.06)
I( )

(19)

θ θσ γ̂ ̂ ̂ = ̂h f x f x( ( , ), ) 0.06 ( , )
I I I( ) ( ) ( ) 0.84

(20)

Stage II: The augmented design was determined by applying
Algorithm 3 with the following inputs. (a) The first-stage design

̃ I( )
= {xi;i = 1,2,...,NI} with values of the design points given in

Table 1. (b) The estimated dose−response model f(x,θ ̂ I( )
) and

the variance model σ ̂ I( )h( f(x,θ ̂ I( )
),γ ̂ I( )) as given in eqs 19 and 20.

(c) The pool of candidate design points {xg
(Grid); g = 1,2,...,G} =

{0,0.5,1,...,30}, which are evenly spaced grid points in [xL,xU] =
[0,30] with a step size of 0.5. (d) The resampling size B = 499.
(e) BMR = 177.
The resulting augmented design turned out to be as given in

Table 3.
Following the augmented design (Table 3), simulation was

performed to obtain the random responses, which are given in
Table 4.
Feeding all the data collected in both stages {(xi,yi); I =

1,2,...,40} to Algorithm 1, the dose−response and variance
models were finally estimated as

θ ̂ =f x x( , ) 20.44 exp( /11.07) (21)

θ θσ γ̂ ̂ ̂ = ̂h f x f x( ( , ), ) 0.09 ( , )0.74
(22)

Figure 2 plots the fitted dose−response curve (eq 21), along
with the Stage I data depicted by dots and Stage II data depicted
by squares.

Table 1. Design of Experiments in Stage I

x1 x3 x3 x4 x5 x6 x7 x8 x9 x10

0 0 0 0 7.5 7.5 7.5 7.5 15 15
x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

15 15 22.5 22.5 22.5 22.5 30 30 30 30
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Comparison with Traditional Design. The results
presented above in the Applying the Two-Stage Procedure
subsection represent the outcome of applying the two-stage
procedure for one time. Because of the random nature of responses,
reapplying the procedure will lead to first-stage responses different
than those given in Table 2 and first-stage fitted models different
than those in eqs 19 and 20. Consequently, the augmented design in
Stage II will turn out differently, the final 40 sample data set will be
different, and the modeling/inference results will be different.
Also, because of the randomness in responses, every time the

same traditional design is applied, a different set of responses will
be collected, and hence, different modeling/inference results will
be obtained. The traditional design for this case is given in eq 23
and is the one used for the toxicology study in Porter et al.46

̃ =
⎛
⎝⎜

⎞
⎠⎟D

0 1.875 7.5 15 30
8 8 8 8 8

Trad

(23)

The two approaches, our two-stage procedure and the
traditional design, both have random outputs. The modeling/
inference results are subject to the randomness of responses.
Hence, these two approaches are compared in a statistical
manner as follows.

Each of the two approaches was applied in this case 100 times.
As a result, 100 sets of results were obtained for each approach.
Because the primary goal of this study is to estimate BMD for
BMR = 177, the two approaches are compared in terms of their
delivered BMDL (eq 9), the lower bound of the one-sided
confidence interval for the BMD.
Specifically, applying the two-stage procedure 100 times leads

to 100 data sets; from each data set, the methods (Algorithms 1
and 2) in the Statistical Modeling and Inference section were
performed to obtain the BMDL (eq 9). From the 100 data sets,
the 100 BMDLs obtained are denoted as

=k{BMDL ; 1, 2, ..., 100}k (24)

In the same way, applying the traditional design (eq 23) 100
times also results in 100 data sets. Performing the statistical
modeling and inference on these data sets leads to 100 BMDLs,
which are denoted as

=k{BMDL ; 1, 2, ..., 100}k
(Trad)

(25)

The true BMD can be easily calculated from the true dose−
response simulation model (eq 16), and it turns out to be 24,
which is represented by the horizontal line in Figure 3. The box
plots are generated in Figure 3 for the BMDLs (eq 24) obtained
from our two-stage procedure (left box) and the BMDLs (eq 25)

Table 2. Simulation Response Data in Stage I

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

21.1 19.6 20.2 19.8 41.1 38.5 41.7 39.3 84.3 80.9
y11 y12 y13 y14 y15 y16 y17 y18 y19 y20

80.8 81.7 152.3 156.6 152.1 156.6 302.5 298.9 312.3 316.7

Table 3. Design of Experiments in Stage II

x21 x22 x23 x24 x25 x26 x27 x28 x29 x30

27.5 29.5 30 29.5 28 28 23 26 25 26.5
x31 x32 x33 x34 x35 x36 x37 x38 x39 x40

28 22.5 25 24.5 22.5 22.5 21 19.5 25.5 18.5

Table 4. Simulation Response Data in Stage II

y21 y22 y23 y24 y25 y26 y27 y28 y29 y30

244.0 300.3 306.4 291.4 257.6 252.7 164.0 214.2 190.2 232.6
y31 y32 y33 y34 y35 y36 y37 y38 y39 y40

259.4 157.5 192.7 181.1 156.2 160.0 131.3 119.9 200.2 105.8

Figure 2. Fitted dose−response model along with the simulation data.

Figure 3. Box plots for the BMDLs resulting from the two-design
methods.
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obtained from the traditional design (right box). A box plot
provides the basic information regarding the distribution of a
data set (say, the BMDLs in eq 25), with the lower hinge being
the 25th percentile, and the upper hinge being the 75th percentile
of the data. For details of box plots, please refer to McGill et al.47

Comparing the two boxes in Figure 3, it is evident that the
BMDLs resulting from our procedure are closer to the true BMD
and vary over a narrower dose range. In other words, with the
same sample size, collecting a data set following the traditional
design leads to a BMDL that may be anywhere between the lower
and upper adjacent of the right box plot, whereas collecting a data
set following the two-stage procedure leads to a BMDL that falls
within the much narrower and more accurate range of the left
box.

■ SUMMARY

This work developed a two-stage experimental design procedure.
Compared to the commonly used naive designs, our methods
lead to dose−response models of higher quality given a limited
sample size (or equivalently, leads to smaller sample size for a
pre-specified model quality). The methods developed in this
paper are able to reduce the experimental cost and time in
toxicology studies, alleviate the rising concerns for animal ethics,
and accelerate the progress toward quantifying the risk, safety,
and health effects of environmental and occupational exposure to
any substances (e.g., nanomaterials).
The two-stage procedure goes on the premise that no

significant cross-stage variability exists, that is, there is no
systematic changes from the first- to the second-stage experi-
ments, and dosage is the dominant factor that accounts for the
variability in biological responses. This assumptionmay well hold
for experiments that are performed in the same lab by the same
experimenters over a relatively short period and on animals with
similar characteristics (say, weight, age, etc.). In our immediate
future research, we will propose a design procedure that is able to
accommodate cross-stage variability; such variability may stem
from different batches of animals, different experimenters, or
different research environments/laboratories. For instance, a
design question to be addressed may be as follows: Given a
certain substance’s toxicology data obtained by some other
research laboratories, how should we design our experiments so
that the integrated data from multi-sources can provide the most
useful information? Answers to such experimental design
questions will certainly help to accelerate the toxicology
assessment of various substances and to facilitate the integration
of multi-source data.
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